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Abstract

The overall moduli and non-linear constitutive relations of solids containing randomly oriented and parallel multiple
bridged microcracks are studied in this paper. For both linear and non-linear bridging laws, two non-dimensional
mixed parameters which play an important role in determining the overall moduli and constitutive properties are
identified. It is shown that the overall moduli of a body containing bridged cracks can be derived from those of the body
containing unbridged cracks of the same configuration with the crack density parameter being discounted by these two
non-dimensional parameters. For non-linear bridging, attention is paid to the power-law bridging which represents the
existing bridging laws in the literature. Particular emphasis is placed on the widely used square-root type bridging law.
In this case, closed-form expressions for the overall non-linear constitutive relations are obtained. For a general power-
law bridging, it is found that the overall constitutive behaviour of the cracked body is governed by Ramberg-Osgood
type relations under strong bridging. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Bridging is an important mechanism in the deformation of solids. In fibre-reinforced composite mate-
rials made of brittle or quasi-brittle matrices and subjected to tension, multiple cracking is usually the first
sign of damage. The appearance of multiple bridged cracks causes the stress—strain curve to deviate from
linearity and thus gives the material a strain-hardening character. In these materials, bridging of multiple
microcracks by fibres plays an essential role in increasing their toughness and in preventing a sudden loss of
their load carrying capacity when the microcracks coalesce and localise into a large band. In polymers, the
craze zones can also be regarded as multiple bridged cracks (e.g. Kausch, 1987). At the atomic level, the
atomic bond between two lattice planes in a solid can also be represented by a non-linear bridging law that
depicts the relation between the attractive stress and the separation (Bao and Suo, 1992).
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On the macroscopic level, a lot of models have been developed to predict the overall properties of solids
containing unbridged cracks and other forms of flaws (Kachanov, 1992; Nemat-Nasser and Hori, 1999). On
the micromechanical level, the reinforcing and toughening effect of fibres on cracks in fibre-reinforced
advanced composite materials have also been studied intensively in the context of fracture mechanics (e.g.
Marshall et al., 1985; Rose, 1987; Nemat-Nasser and Hori, 1987; Chiang et al., 1993; Cox and Rose, 1996,
etc.). However, there have been relatively few studies on the macroscopic constitutive behaviour of fibre-
reinforced composites, such as cementitious composites, and solids containing multiple bridged micro-
cracks. Wang et al. (1986a, 1986b) studied in detail the damage process in short fibre-reinforced composite
materials. They measured the crack configuration parameters and predicted the effective modulus of the
materials containing multiple microcracks using the self-consistent approach. However, in their study, the
bridging effect of the fibres on the cracks is ignored. As pointed by Nemat-Nasser (1987), for fibre- or
whisker-reinforced composite materials, the bridging effect over the opening cracks must be taken into
account in the prediction of the overall properties of the materials. The relation between the macroscopic
constitutive response and the micromechanical parameters is also vital in the material design. For quasi-
brittle monolithic or fibre-reinforced composites, in which the deformation process leading to complete
rupture usually involves multiple cracking, the complete constitutive behaviour is important to the analysis
of propagation of a macroscopic crack, as was demonstrated by Ortiz (1988).

Recently, a few studies have been devoted to the prediction of overall properties of solids containing
multiple cracks that are subjected to bridging. Vagaggini et al. (1995) have previously studied the constitutive
relations of fibre-reinforced ceramic composite materials with evolving cracks. Their constitutive relations
are based upon the analysis of deformations caused by a through matrix crack and debonding/sliding be-
tween the fibre and the matrix. Thus it is akin to the ACK model (Aveston et al., 1971). Karihaloo et al.
(1996) have studied the complete constitutive behaviour of short fibre-reinforced cementitious composites
under unidirectional tension. Their study is in a numerical form and is limited to the doubly periodic
rectangular array of cracks that are subjected to a linear bridging law. The counterpart closed-form ex-
pressions of moduli were recently obtained by Wang et al. (2000a, 2000b) using an approximate asymptotic
analysis. In the present paper, first, the overall moduli of bodies containing multiple parallel and randomly
distributed microcracks are presented when the cracks are subjected to linear bridging. Two non-dimen-
sional mixed parameters are identified for in-plane shear modulus and tensile modulus. By these two pa-
rameters, the relationship between the overall moduli of bodies containing multiple bridged microcracks and
those for the unbridged case is established in a concise form. Moreover, by adjusting the values of these two
non-dimensional parameters, some interesting results can be obtained. Next, when the microcracks are
subjected to non-linear bridging laws, which have been well studied and widely used in the literature, the
overall non-linear constitutive relations of materials are investigated. For the widely used square-root type
non-linear bridging law, the overall non-linear constitutive relations of the cracked body are obtained in a
closed-form. For general power-law bridging, the overall constitutive relations are also obtained in closed-
form expressions under strong bridging, which are shown to be of the Ramberg-Osgood type. Finally, the
non-linear analysis is applied to the doubly periodic arrays of multiple bridged cracks where the interaction
among the cracks is taken into account explicitly. The present study serves as a bridge between the mi-
cromechanical analyses of bridging mechanisms and the macroscopic behaviour of solids characterised by
multiple bridged microcracks.

2. General formulae

The overall strain and stress of a body containing multiple flat cracks are related via

| .
&7 = Dijyyou Ty Z /s ([wilnj + [wj]ni) dS, (m)
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where ¢;; and ¢, are the average stress and strain components, respectively. [u;] and »; are the total crack
opening/sliding displacement (COD/CSD) and the component of the unit vector normal to the crack faces.
S, 1s the region occupied by the crack. D?jk, is the compliance tensor of the uncracked material. The relation
(1) can also be written as (Nemat-Nasser and Hori, 1999)

0
& = D01 + Hijuow (2)

where the supplementary tensor H can be directly calculated from the expression
1
Hijon =55 ; /S”([Mi]"j + [w;]n;) dS, 3)

As will be made clear below, when the microcracks are subjected to a non-linear bridging law, the overall
behaviour of the cracked body will also be non-linear. Thus the supplementary fourth-order tensor H will
no longer be a constant tensor. It will depend upon the applied stress o;; besides its usual dependence upon
the crack configuration and density. In this case, the overall secant compliance tensor of the material
becomes

D = D + H(o) 4)

For multiple unbridged/bridged cracks, the pseudo-traction technique has been shown to be a useful tool
in the calculation of the crack opening/sliding displacement (Horii and Nemat-Nasser, 1985; Kachanov,
1987; Hu et al., 1994; Karihaloo et al., 1996). The pseudo-traction technique usually results in a system of
integral equations for the unknown pseudo-tractions on the crack faces. Recently, Wang et al. (2000a,
2000b) solved the integral equations based upon an asymptotic analysis for periodic arrays of bridged
cracks. This procedure leads to closed-form expressions of the pseudo-tractions and the overall moduli of
the cracked bodies. They show that the approximate solutions give very accurate prediction of the overall
moduli of the cracked bodies compared with the numerical solutions for low to moderate levels of crack
density. In addition, it is shown in the works of Wang et al. (2000a, 2000b) that the overall moduli of the
body containing bridged cracks are less sensitive to both the crack configuration and the density than those
for the unbridged case.

For multiple bridged cracks, the stress-consistency condition on each crack is written as

ohx) -3 / Kot X)) (%) 4%, + iy (%) = 0 (5)

m#n m

where ag(x,,) is the pseudo-traction on the faces of a flat crack occupying the region S,, p;;(x) is the bridging
stress, and a?j is the applied stress which is interpreted as the homogeneous stress when the cracks are
absent. After obtaining the pseudo-traction, the crack opening/sliding displacement can be calculated
through

[;](x,) :/SPik(Xn,X;)O'EI(X;)n/dS,, (6)

The bridging stress is usually expressed as a function of the crack opening/sliding displacement
pij(x,) = f5;([u](x,)) (i not summed) (7)

There have been some studies of bridging laws in the literature. For example, Marshall et al. (1985), and
Bao and Song (1993) presented several non-linear bridging laws for fibre-reinforced solids. In the previous
studies of Karihaloo et al. (1996), and Wang et al. (2000a, 2000b), a linear bridging law has been chosen to
facilitate the analysis. In the present paper, both linear and non-linear bridging laws will be considered.
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3. Linear bridging case

In this section, the overall moduli of bodies containing multiple slit-like cracks which are bridged by a
linear law will be investigated. First, we consider the case when the cracks are all parallel to, say, axis 1, in a
two-dimensional sense. As usual, it is assumed that the size of the cracks is sufficiently small compared with
the size of the body under consideration so that each crack can be regarded as situated in an infinitely
extended medium. Within the formalism of pseudo-traction technique, the opening/sliding displacement of
each crack is determined by the distributed pseudo-traction on its faces only, while the interaction and
bridging effect are taken into account in the solution for the pseudo-traction. Thus, the crack opening/
sliding displacement is usually determined through solution of the integral equation (5). This accurate
procedure will inevitably need numerical computation and only give the overall properties of the cracked
body in a numerical form. In order to be able to get closed-form explicit results, the crack opening/sliding
displacement is approximated by what is obtained through the application of the average pseudo-traction
over the crack faces. In this case, one obtains

o) = /2 — 2 8% (1= 1,2) Q

where 1/E' = 1/E for a plane-stress condition, and 1/E’ = (1 —1?)/E for a plane-strain condition. %, is the
average pseudo-traction over the crack faces. a, is half of the crack length. The accuracy of this approx-
imation will be discussed later. Using a linear bridging law, the bridging stress can be expressed as

Pii(Xa) = kgl (xa) (1 = 12,225 k= 1,2) ©)

where k;; is the constant bridging stiffness.
If the interaction among the cracks is neglected, then the stress-consistency condition (5) becomes,

4
Oh (%) + ki@ — 32 0 = ) (ij=12,22; k=1,2) (10)

It is seen that the above condition cannot be satisfied exactly as the right hand side is a constant. Following
the procedure in the works of Wang et al. (2000a, 2000b), the condition (10) is approximated in an average
sense as follows

1 Han 4
5 / [ag-(x,,l)—&—k,»j“/a,zl—xﬁlﬁc_ffz} dv,y = oy (i =12,22; k=1,2) (11)

dn

which becomes, after integration,

nankl»jk _p

_ 0
I = 0y

ab + (ij =12,22; k=1,2) (12)

where 65- is the average pseudo-traction. Setting ij = 12 and 22, in turn, and assuming that there is no
coupling between crack opening (sliding) and shear (normal) bridging traction, Eq. (12) yields

o, = ocna(l)z (13)

0o = ﬁnagZ (14)
where

SRR U — (15)

= T e E——
1 + M%,IZI 1 + naHE/ZZZ
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Using the pseudo-tractions in (13) and (14), it is straightforward to obtain the overall in-plane shear
modulus and the tensile modulus in direction 2 from Eq. (1), assuming a plane-stress condition,

Hip n(l +x) , B
Lid RIS ) IS S 4 16
It { T f} (19)
E -1
= {1+ 2nf"} (17)
where
K K
f/ = Z]V”aia”’ f,/ = ZNnaiﬁn (18)
n=1 n=1

The summation is subjected to the constraint
K
N=>)"N, (19)
n=1

where N is the total number of cracks per unit area. When all the cracks have the same length, say, 2aq,
expressions (16) and (17) become

P (1 + k) -
o fra 2] (20)
E _
7= {1 +21pf} ! (21)
where f = Na’? is the usual crack density parameter, and
e (22)

= nakyy; naky)
1+ =2 1+ ==

Because o and f§ are always less than 1, it is seen from Eqgs. (20) and (21) that these two non-dimensional
mixed parameters have the effect of reducing the crack density compared with the unbridged case. It is
obvious that when the bridging stiffness is zero, the above results reduce to those for the unbridged case.
For strong bridging, the non-interacting approximation can be expected to produce very accurate results
even at high crack densities. In the extreme case when the bridging stiffness tends to infinity, the overall
moduli of the cracked body are unaffected by the cracks.

The accuracy of the predicted overall moduli based upon the approximation involved in Egs. (8) and (11)
has been discussed in the work of Wang et al. (2000a) for doubly periodic arrays of unbridged and bridged
cracks. It is shown that the results so obtained are very accurate for low to moderate levels of crack density
(f = 0—0.25) for doubly periodic crack arrays even when the neighbouring cracks are very close to each
other. This is reasonable as the overall properties of the material are primarily controlled by the average
crack opening/sliding displacement. Therefore, the above approximation is expected to be accurate for
reasonable values of crack density, especially under strong bridging.

Next, we consider the situation where the cracks are randomly oriented in two dimensions. For this, we
shall modify the procedure in the book of Nemat-Nasser and Hori (1999) to suit the bridged case under
consideration. First, in the local coordinate system, define a fourth-order tensor I:Ii'}kz through

1 [, P AN qa An A
a ), 5 () + [i]#) d%n = Hj, 63, (@3)

n
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where n denotes the crack number. The quantities with a hat denote those in the local coordinate system for
crack n. It is easily shown by using Egs. (8) and (13)—(14) that

- 2n

Hyyyy = Hiyyy = Hyy = Hypyy = o5 2E” Hyyy = 5;1?

All other components are zero. Thus, the supplementary tensor H in Eq. (3) for the randomly distributed
cracks is obtained through

(24)

K 1 2n
=Y {ma| 5. [ 00,0008, 0. | (25)

n=1

where 0, is the crack orientation angle, and Q}; are the components of the usual orthonormal tensor. Since
the cracks are randomly oriented, H is an isotropic tensor which is expressed as

Hijiy = h10;;01 + ha3(0ud 0 + 0105 (26)
From Egs. (25) and (26), one obtains

4hy + 2y = ZN,,CRH;222 = ZN azﬁ,, =" (27)
K . . 2n b
2hy + 3hy = ;Nnag (H3ysy + 2fl1515) = 1" 5+ f' (28)

which yields

=15 S =) = 2F S (29)
Substituting H into (4) gives
B f, omletl)
b {12 Dy ) (30)
E T ! 1 -1
E:{1+Z(f +3f)} (31)

Generally, i, # 0. This is different from the solution of the unbridged cracks where #; = 0 (Nemat-Nasser
and Hori, 1999). When the bridging stiffnesses are zero, the above results reduce to those in the literature
(Benveniste, 1986; Nemat-Nasser and Hori, 1999). Again, when all the cracks have a common length 2a, the
overall properties become

g {l+wﬂa+ﬁ)}l (32)
%:{1+%f(oc+3ﬁ)}_l (33)

When we set « or f to be equal to zero, we obtain the overall properties of materials with certain
“internal constraints”. If o is set to be zero, then the sliding between the crack faces is prohibited and the
cracks can only open. On the other hand, if f§ is set to be zero, then the opening of the cracks is prohibited
and the crack faces can only slide. One immediate example in this class is the compression of a cracked
body when friction between the crack faces is neglected. Another example is the deformation of a body that
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is governed by crack sliding only under either tension or compression. Hence we can get the ratio between
the overall compressive modulus and the overall tensile modulus of a body containing bridged frictionless
microcracks

%: {1+3r@+3p)} [{1+572) (34)

Setting o = f =1 in the above expression gives the ratio between the compressive modulus and tensile
modulus of a body containing randomly distributed unbridged frictionless microcracks.

4. Non-linear bridging case

For fibre-reinforced brittle matrix composite materials, Marshall et al. (1985) presented a square-root
type non-linear bridging law. Bao and Song (1993) studied in detail the effect of various interface conditions
on the bridging law, and presented several non-linear bridging laws. These bridging laws can be well
represented by the following power-law

(%) = ko ([ ()" (ij = 12,22; k=1,2; k not summed) (35)
where k?jk is a material constant depending upon micromechanical material parameters (¢.g. Marshall et al.,
1985; Bao and Song, 1993). It is noted that the one-dimensional bridging law in the literature (i.e. only
exerting normal bridging traction) has been generalised to two dimensions in the formula (35). When
m > 1, it represents a concave bridging law, whereas when m < 1, it represents a convex one. When m = 2,
it becomes the square-root type non-linear bridging law of Marshall et al. (1985).

As the matrix is still regarded as being linear elastic, the crack opening/sliding displacement is still
calculated using the formula (8). This is an advantage of the pseudo-traction technique. Here we only
consider the randomly distributed parallel microcracks. Substituting (8) into (35) gives

4 1/m
(%) = kY (E) (@) (@2 —x2)"*" (ij =12,22; k =1,2; k not summed) (36)
Substituting (36) into the stress-consistency condition in (5) and using the averaging process in (11), we get
E
ay +A,-]~kDm(6£2)l/m =0y (ij =12,22; k=1,2; k not summed) (37)

where A;; and D are two non-dimensional parameters defined as follows

Ay = "
i E

1 +an \/EF(I +L) 1
D= 2 2 1/2mdx,, _ 2m > 2 39
e ], ) =S >

In Eq. (39), I'(x) is the gamma function.
Setting ij = 12 and 22 in turn, we get

1/m
~p =p
v o1

01 12

(38)
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50 & 1/m
4B 2] =1 )
) 0
where
qlmp0_im /g (m=1)/m Almpd m /g (m=1)/m
Ay = D——21— (- . B, =pr T (= ”
E a} E a), (42)

It is not possible to get general solutions of the above equations for any value of m. However, they can be
easily solved when m = 2, i.e. for the square-root type bridging law. In this case, the pseduo-tractions are

r Q2
~1+/1+4/4, @3)

p 0 42
o1, = 04

2
Gy = O'223

r 12
—1++/1+4/B, (44)
2

Thus, o, and f, in Eqgs. (13) and (14) become

- 42
1+ /1442
0y = 4| VI A/ (45)

- 12
4+ /T+4/R
T (46)

The overall secant moduli of the cracked body are also calculated from expressions (16) and (17) for cracks
with different lengths, and (20) and (21) for cracks with the same length. The non-linear stress—strain re-
lations for the latter case are

ut

fA2

1+\/T4/AZ] @)

O.0
822:% 1+27TfB§

1+ m] us)
2

where 4, and B, are obtained by setting a, = a and m = 2 in (42). Therefore, these expressions along with
(42) give the closed-form non-linear overall stress—strain relations of a material containing microcracks that
are subjected to square-root type bridging law.

Generally, the strength of a material is orders of magnitude smaller than its Young modulus. Therefore,
when the non-dimensional bridging stiffnesses A5 and Ay, defined in Eq. (38) are not too small (i.e. strong
bridging), we can expect that 4,,, and B,,, in (42) are very large as m > 1 (concave bridging). Then we have
the approximate solutions of Eqs. (40) and (41) for arbitrary m > 1

1 1
- 4
e e (49)

nm

oy =

It is easy to get the stress—strain relations for such a material under in-plane shear and unidirectional
tension, respectively,
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0 K
o (i +1) , 1
&1 = 3 1 + 2 nE:l N,,an A_Zlm (50)
% i EK: 2 1
&2 :f 1 +27'L' - N"a"B_ym (51)

For cracks of equal length 24, the above expressions reduce to

0
o), a(k+1) 1
S L ) [ S A 2
&2 2#[ + 2 fAﬂ (52)
al 1
&pn = % |:1 +2TCfB—;:‘1:| (53)

where 4,, and B,, are obtained by setting a, = a in Eq. (42). By substitution, the above expressions can be
rewritten as

0

01, 41/mk?21a1/m(" +1) o (k+ D" 5\m
) = —= D 54
T nf[ 8u (8p)" (1) 59
0 I/mp0  1/m\ ~™ 0 \™
0 (A "hya On
0y = =2+ 2 D——== =2
5%} E + nf( I ) ( 5 > (55)

Therefore, when the bridging is governed by a power-law, the overall stress—strain relations are approxi-
mately governed by Ramberg-Osgood type constitutive laws in the case of strong bridging.

5. Non-linearly bridged periodic arrays of cracks

Overall properties of media containing periodic microstructures have been paid intensive attention in
recently years. Although perfect periodic microstructures may not exist in real materials, the estimate of the
overall properties of media containing assumed periodic microstructures has broad application and pro-
vides limiting values for actual cases, as pointed out by Nemat-Nasser and Hori (1999). A periodic con-
figuration also provides a unit cell for homogenisation. For crack problems in two dimensions, the
unbridged crack arrays have been studied by some researchers (e.g. Delameter et al., 1975; Karihaloo, 1978;
Deng and Nemat-Nasser, 1992; Nemat-Nasser et al., 1993). A paradox which exists in some of the previous
works was resolved by Karihaloo et al. (1996). For doubly periodic configurations, the interaction among
the multiple cracks can be taken into account explicitly and accurately using the pseudo-traction technique.
However, the resulting integral equations for the unknown pseudo-tractions have to be solved numerically
(Karihaloo et al., 1996). Recently, under the assumption that the cracks are so distributed that some high-
order terms related to the crack configuration and density can be neglected, Wang et al. (2000a, 2000b)
obtained closed-form expressions for the overall moduli. Comparison with numerical solutions has shown
that the approximate analytical solutions are very accurate for low to moderate levels of crack density. In
this section, we shall extend the procedure in the works of Wang et al. (2000a, 2000b) to the cases of non-
linear power-law bridging.

For doubly periodic rectangular and diamond-shaped arrays of bridged microcracks, the stress-con-
sistency condition (5) can be expressed as (Wang et al., 2000b)
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{g:i }612+2161/ ap12(x1)dx1 :6(1)2 (56)

{ ://j; }O'gz + % / apzz(xl)dxl = 622 (57)

a

where the superscripts r and d denote rectangular array and diamond-shaped array, respectively, and

¢" = 1 + 4sin’ —exp( 2%71)[ 2Wn} (58)
¢ =1 — 4sin® —exp( 2%71)[ 2% ] (59)
=1+ 4sin® = exp( 2;71)[1+2Wn} (60)
lpdl4sin27;;exp<2;n> {1+2;n] (61)

In the above expressions, « is the half crack length, H and W are respectively the distance between two
neighbouring rows of cracks and the distance between the centres of two neighbouring cracks in the di-
rection of the crack line.

Substituting the bridging law (36) into (56) and (57) yields

1/m
{5 = (62)
¢ 6(1)2 6(1)2
{ Y }‘722 +B, 022 o -1 (63)
l/’ ‘722 ‘722

For m = 2, the above equations can be solved exactly to give

_ o
o, = { 24 }‘7(1]2 (64)
0y = { ﬁﬁd }632 (65)
where
2
- 22
_ / 42 r 2 d

o = A2+2(;2+4¢ , ad= {A2+ \/€2+4¢ } (66)

L i 2¢

r 12
g —B, + \2/1?5 + 4y P {—Bz +1/B3+ 4¢d] (67)
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Then the constitutive relations under shearing and tensile loadings are, respectively,

{G} =)= 5] @

(£)-2[oo(2)]

where f = a/(WH).

For strong bridging so that the second terms on the left hand sides of the equations (62) and (63)
dominate, the constitutive relations revert to the Ramberg-Osgood type ones in Eqs. (54) and (55), in which
case the difference between the crack configurations vanishes. The overall behaviour is only dependent upon
the crack density parameter f and the bridging stiffnesses. This phenomenon has also been observed for
linear bridging case in the work of Wang et al. (2000b).

6. Conclusions

In this paper, the overall properties of bodies containing multiple bridged microcracks are studied. For
linear bridging, the overall shear and tensile moduli are presented for parallel and randomly oriented cracks
using the non-interaction approximation. It is found that the effect of bridging is equivalent to a reduction
in the crack density parameter compared with the unbridged case. For power-law bridging, the unknown
pseudo-tractions are found to be the solutions of two non-linear equations. The overall constitutive rela-
tions of the cracked body are given in closed-form expressions for the square-root type bridging law. For
strong bridging, it is found that the overall constitutive behaviour of the cracked body can be approxi-
mately described by Ramberg—Osgood type relations under general power-law bridging. For both linear
and non-linear bridging, two non-dimensional mixed parameters, namely, o («,) and f (f,), are identified.
They are constants for the former case and functions of the applied stress for the latter. The crack opening/
sliding stress is reduced by these two parameters compared with unbridged cracks. Consequently, their
effect is to reduce the conventional crack density parameter in the expressions of the overall moduli. It is
noted that there are various schemes in the literature to take into account the crack interaction for dense
microcrack distribution that are not bridged, for example, the self-consistent scheme and differential
scheme. In this case, the corresponding moduli or constitutive relations for bridged microcracks may be
obtained by replacing the conventional crack density parameter with the reduced crack density parameter.
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